Computational design optimization for microfluidic magnetophoresis.
نویسندگان
چکیده
Current macro- and microfluidic approaches for the isolation of mammalian cells are limited in both efficiency and purity. In order to design a robust platform for the enumeration of a target cell population, high collection efficiencies are required. Additionally, the ability to isolate pure populations with minimal biological perturbation and efficient off-chip recovery will enable subcellular analyses of these cells for applications in personalized medicine. Here, a rational design approach for a simple and efficient device that isolates target cell populations via magnetic tagging is presented. In this work, two magnetophoretic microfluidic device designs are described, with optimized dimensions and operating conditions determined from a force balance equation that considers two dominant and opposing driving forces exerted on a magnetic-particle-tagged cell, namely, magnetic and viscous drag. Quantitative design criteria for an electromagnetic field displacement-based approach are presented, wherein target cells labeled with commercial magnetic microparticles flowing in a central sample stream are shifted laterally into a collection stream. Furthermore, the final device design is constrained to fit on standard rectangular glass coverslip (60 (L)×24 (W)×0.15 (H) mm(3)) to accommodate small sample volume and point-of-care design considerations. The anticipated performance of the device is examined via a parametric analysis of several key variables within the model. It is observed that minimal currents (<500 mA) are required to generate magnetic fields sufficient to separate cells from the sample streams flowing at rate as high as 7 ml∕h, comparable to the performance of current state-of-the-art magnet-activated cell sorting systems currently used in clinical settings. Experimental validation of the presented model illustrates that a device designed according to the derived rational optimization can effectively isolate (∼100%) a magnetic-particle-tagged cell population from a homogeneous suspension even in a low abundance. Overall, this design analysis provides a rational basis to select the operating conditions, including chamber and wire geometry, flow rates, and applied currents, for a magnetic-microfluidic cell separation device.
منابع مشابه
Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells.
Immunomagnetic isolation and magnetophoresis in microfluidics have emerged as viable techniques for the separation, fractionation, and enrichment of rare cells. Here we present the development and characterization of a microfluidic system that incorporates an angled permanent magnet for the lateral magnetophoresis of superparamagnetic beads and labeled cell-bead complexes. A numerical model, ba...
متن کاملCDF Analysis of Particle Magnetophoresis in Multiphase Continuous-Flow Bioseparators
The use of magnetic particles has recently expanded for a process known as detoxification in which different toxins are captured from the bloodstream of septic patients. Due to the laminar flow developed in microfluidic devices, the particle separation after the toxin capture can be carried out in a continuous mode using multiphase microfluidic channels. In this work, the design for a two-phase...
متن کاملMicrofluidic Approaches for Multiplexed Immunochemical Assays
This paper reviews our microfluidic approaches for multiplexed immunochemical assays. In particular, topics will be focused on the multiplexed sensing and detection based on the behaviors of immunocomplexed microbeads under magnetophoresis or optoelectrofluidics environment as a new platform for protein sample manipulation and detection. In addition, a microfluidic immunohistochemistry platform...
متن کاملContinuous microfluidic DNA extraction using phase-transfer magnetophoresis.
This paper reports a novel microfluidic-chip based platform using "phase-transfer magnetophoresis" enabling continuous biomolecule processing. As an example we demonstrate for the first time continuous DNA extraction from cell lysate on a microfluidic chip. After mixing bacterial Escherichia coli culture with superparamagnetic bead suspension, lysis and binding buffers, DNA is released from cel...
متن کاملIMPROVING COMPUTATIONAL EFFICIENCY OF PARTICLE SWARM OPTIMIZATION FOR OPTIMAL STRUCTURAL DESIGN
This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomicrofluidics
دوره 5 شماره
صفحات -
تاریخ انتشار 2011